Direct Measurement of Nanoscale Orientational Order

Beamline: X19A

Technique: Low-Energy (1.5-4 keV) Resonant X-ray Diffraction Si, Cl, P, Ca, and S k-edges are within this energy range

Researchers:

R. Pindak (NSLS-BNL)

A. Cady, C.C. Huang (U. of Minnesota)

H. Gleeson, S. Watson, L. Matkin (U. of Machester)

P. Barois (U. Bordeaux)

J. Goodby, A. Hird (Hull U.)

Publication:

A. Cady et al., "Orientational ordering in the chiral smectic-C_{F12} liquid crystal phase determined by resonant polarized x-ray diffraction, *Phys. Rev. E - R. C.* **64** 050702 (2001).

Motivation: Inter-layer and intra-layer nanoscale orientational ordering occur in a wide range of different liquid crystal systems. Resonant x-ray scattering provides a *direct* probe of this nanoscale orientational ordering.

The measured structure of the smectic- C_{F12} phase consists of a 4-layer unit cell with C_i being the in-plane tilt direction of the ith layer (*left*), this 4-layer unit cell rotates with a pitch, P_0 , of 0.3 μ m (*middle*), the distinctive resonant diffraction features (*right*).

Results: The interlayer order in a tilted, layered, liquid-crystal phase with a 4-layer periodicity was directly determined in a sulfur-containing compound by measuring the s and p-polarized diffraction features for a s-polarized incident x-ray beam with an energy at the sulfur k-edge. A biaxially distorted helical structure was determined consistent with optical measurements.